Physiology Talk

Energy Systems / Training Intensity Zones as it applies to training swimmers

Presenter

Alex Nikitin

Parametrix.research@gmail.com

OSI Swimposium, September 2021

Intent & Purpose

To offer *miminal* but *essential science* for better understanding physiological processes of training and performance
To offer practical information useful to you *immediately*To create a foundation for the

upcoming talks, and future learning

Energy Sources (systems) Physiology

Energy Systems Comparison

System	Power (rate of ATP production)	Capacity (total ability to produce ATP)	Fuels Used
phosphagen system	very high	very low	creatine phosphate stored ATP
glycolysis	high	low	blood glucose muscle & liver glycogen
aerobic system	low	very high	blood glucose muscle & liver glycogen adipose & intramuscular fat

Energy contribution to swimming events

Two Properties of Energy Systems

Capacity + Power = System "The Tank" + "The Nozzle" = System

Sub-systems of muscle cell

• **Executive** (myofibrilles) provides contraction

• Energy Providing (mitochondria) creates and supplies energy

Effects of Anaerobic training regime on a muscle cell structure

Develops "Executive" sub-system of the cell

- *Muscles increase in size*
- Strength gains, increased power

Effects of Aerobic training regime on a muscle cell structure

Develops "Energy Providing" sub-system

- Increases mitochondrial count
- Increases volume of oxidative enzymes
- Improves ability to retain more O₂ and efficiently recycle Lactate
- Improves specific endurance

Physiological Qualities (PQs) Swimmers Need For Performance

Aerobic Endurance
Aerobic Power
Lactate Tolerance
Lactate Production
Anaerobic Power (Sprint Ability)

Training Intensity Zones as related to Physiological Qualities

Intencity Zones	Abbr	Physiological Qualities
Aerobic Recovery	REC	Aarabia Enduranco
Aerobic Development	EN1	Aeropic Endurance
AnaerobicThreshold	EN2	Aerohic Power
Max Oxygen Uptake	EN3	
Lactate Tolerance	SP1	Anaorobic Ennduranco
Lactate Production	SP2	
Maximum Speed	SP3	Anaerobic Power

Training Intensity Zones as related to Physiological Qualities

No exact boundaries between zones
 Each zone has a pathway for producing energy

More intensity zones in use – more complicated to track

Start with basic 4, and advance to 7 as you get better at it

Aerobic Endurance: EN1

The ability to maintain a submaximal pace (70% from PR) for an extended period without accumulating lactic acid and experiencing early muscular fatigue

♦ Time to develop: long, 10-16 weeks

Aerobic Development EN1 (lower end spectrum) • Develops the ability to produce energy without depleting muscle energy stores ◆HR= 20 (:10") ◆Time to Full Recovery (Hours) 6-12 **Stroke Rate: very slow** Stroke Length: maximal

Aerobic Development EN1 sets, examples

Set=3000

◆ 15 x 200 :30s

◆ 2 x (3 x 300 :30s + 3 x 200 :20s) :90s

◆ 2 x 1500 :90s

◆ 2 x (500+400+300+200+100 :30s) :90s

♦ 6 x 500 :45s

◆ 12 x 250 :20s

◆ 3 x 1000 :60s

 \bullet 1000 + 800 + 600 + 400 + 200 : 30s

◆ 20 x 150 :30s

♦ 3 x 400 :30s + 3 x 300 :20s + 3 x 200 :10s + 3 x 100 :10s Aerobic Overload EN1 (higher end spectrum) • Optimizes the ability to use the respiratory & cardiovascular

systems.

◆HR= 24 (:10")

♦ Time to Full Recovery (Hours) 12-24

Stroke Rate: mod-slow

Stroke Length: sub-maximal

Aerobic Overload EN1 sets, examples

Set=1500

◆ 1 x 1500

- ◆ 3 x 500 :30s
- ◆ 15 x 100 :30s

◆ 5 x 300 : 20s

- ◆ 500 + 400 + 300 + 200 + 100 :30s
- ◆ 5 x (2 x 150 :20s) :90s
- ◆ 6 x 250 :40s

◆ 10 x 150 :45s

◆ 3 x (2 x 250 :30s) :90s

Benefit of Aerobic Endurance Training EN1 (The Glue That Holds It All the Parts Together)

- Decreased glycogen use
- Decreased lactic acid accumulation
 - ♦ Less lactate production
 - ♦ Greater clearance
- Improved stroke economy
- Combined with focus on low stroke count develops power and doubles the effect (see note)
- ◆ Easier to swim at given pace
- ◆ Better recovery in all forms of training

Aerobic Power: EN2-EN3

- ♦Using a mix of glycogen and O₂ to produce energy
- ◆Sets ceiling for aerobic endurance
- ◆Time to develop: long, 8-16 weeks

Aerobic Power An. Threshold: EN2 (lower end of spectrum)

- Least efficient aerobic energy intensity but an important component to power output.
- Helps you delay the build up of lactate in muscles, you can go stronger longer.
- ◆ HR= 26-28 (:10")
- ◆ Time to Full Recovery (Hours) 24-48
- ◆ Stroke Rate: moderate
- Stroke Length: near-race, but longer

Anaerobic Threshold EN2 sets, examples

Set=800 (*a starting point*)

◆ 2 x 400 :45s

- ◆ 4 x 200 :20s
- ◆ 8 x 100 :10s
- \bullet 50 + 100 + 150 + 200 + 150 + 100 + 50 :10s
- \diamond 800 for time
- ◆ 16 x 50 :20s
- ◆ 2 x 200 :20s + 4 x 100 :10s
- ◆ 300 + 200 + 100 + 2 x 50 :15s
- ◆ 4 x 200 :30-20-10s
- ◆ 2 x 200 :20s + 2 x 100 + 4 x 50 :10s

Anaerobic Threshold EN2 sets, examples

Can build up to a set=1500

- ◆ 5 x 300 :40-30-20-10s
- ◆ 500 + 400 + 300 + 200 + 100 :30s
- ◆ 5 x (6 x 50 :30-25-20-15-10s) :90s
- ◆ 15 x 100 :30s
- ◆ 3 x 200 :30s + 3 x 150 :20s + 3 x 100 :15s + 3 x 50 :10s
- ◆ 10 x 150 :45s
- ◆ 3 x (200 + 150 + 100 + 50 :20s) :60s
- ◆ 3 x (5 x 100 :40-30-20-10s) :90s

Max VO2: EN3

- Holding a stronger pace each repeat, but given more rest to be able to recover enough for the next rep. This allows you to learn to train faster as the season progresses.
- ◆ HR= 28-32 (:10")
- ◆ Time to Full Recovery (Hours) 48-96
- ◆ Stroke Rate: at or near mid. dist. race
- **♦** Stroke Length: at mid. distance race

Aerobic Power EN3 sets, examples

- Set=500 (a starting point)
- ◆ 10 x 50 :15s
- ◆ 6 x 50 :10s + 2 x 100 :20s
- \bullet 50 + 100 + 200 + 100 + 50 :30s
- ◆ 3 x 100 :30-20-10s + 4 x 50 :20-15-10s
- ◆ 5 x 100 :60s
- ◆ 2 x 100 :30s + 4 x (75 fast, 25 ez) :30s*
- \bullet 6 x 50 :30s + 4 x 50 :10s
- $4 \times (75 \text{ fast}, 25 \text{ ez}) : 30\text{s}^* + 4 \times 50 : 30\text{s}$
- ◆ 5 x 100 :60-50-40-30s
- \diamond 200 + 150 + 100 + 50 : 30s

Aerobic Power EN3, examples

Can build up to a Set=1000

◆ 400 + 300 + 200 + 100 :60s

- ◆ 5 x 200 :60-50-40-30s
- ◆ 10 x 100 rest :45-40-35-30-25-20-15-10-5s

◆ 20 x 50 :20s

- ◆ 5 x 100 :45s + 10 x 50 :30s
- ◆ 3 x 300 :60s + 100
- ◆ 2 x 300 :60s + 2 x 200 :30s
- \bullet 50 + 100 + 200 + 300 + 200 + 100 + 50 : 30s
- \diamond 2 x 200 : 30s + 2 x 150 : 20s + 2 x 100 : 10s + 2x50 : 5s
- ◆ 3 x 200 :60s + 4 x 100 :30s

◆ 4 x 250 :60-40-20s

Benefit of Aerobic Power Training (EN2-EN3)

Raises ceiling for improving Aerobic Endurance (AE)
Improves AE (a little)
Improves lactate tolerance (a little)
This type of training allows you to be great the last ¼ of the race.

Lactate Production: SP2

- The ability to produce maximal anaerobic energy
- This ability is the combined effect of physiological and psychological adaptations

Race Pace – Broken swims at race speed or predictor swims at race speed. Helps you learn pace and race rehearsal.

◆ Time to develop: 4-6 weeks

Lactate Production: SP2

Work/Rest ratio 1:2 – 1:4
Maximal Intensity
HR= Maximal
Time to Full Recovery (Hours) 24-120
Stroke Rate: at race, optimal
Stroke Length: at race, efficient

Lactate Production: SP2 sets, examples

Set=300

- ◆ 2 x 100 :90s + 2 x 50 :90s
- 6 x 50 :60s holding $\frac{1}{4}$ of race 200 time
- ◆ 4 x 50 :90s + 4 x (25 fast 25 ez) :60s*
- ◆ 12 x (25 fast 25 ez) :60s
- \bullet 150 :90s + 100 :60s + 50
- 3 x 100 from a dive :3min holding $\frac{1}{2}$ of race 200 time
- ◆ 100 :90s + 2 x 50 :60s + 4 x (25 fast 25 ez) :30s
- ◆ 4 x 50 :90s + 2 x 50 :60s
- ◆ 6 x 50 :30-40-50-60-70s
- ◆ 3 x 100 :3min resting :10 at 50/75
- 6 x 50-2:00 holding $\frac{1}{2}$ of race 100 time.

Lactate Tolerance: SP1 Anaerobic Capacity

- Develops ability to maintain muscle fuction in fatigue-causing conditions.
- This ability is the combined effect of physiological and psychological adaptations
- **♦**Time to develop: medium, 4-6 weeks

Lactate Tolerance: SP1

Work/Rest ratio 1:2-1:1
Max Intensity
HR= 29-32 (:10")
Time to Full Recovery (Hours) 72-96
Stroke Rate: at race, optimal
Stroke Length: at race efficiency

Lactate Tolerance: SP1 sets

Set=400

- ◆ 4 x (50 fast 50 ez) :10s* + 8 x (25 fast 25 ez) :10s*
- ◆ 2 x 100 :20s + 4 x 50 :20s
- ◆ 8 x 50 :60s, 4 x 100 :2min
- \diamond 200 :60s + 100 :30s + 2 x 50 :10s
- ◆ 2 x 200 :3min
- ◆ 4 x 50 :30s + 2 x 100 :60s
- \bullet 100 :45s + 200 :90s + 100
- ◆ 16 x (25 fast 25 ez) :20s
- ◆ 8 x 50 :60-50-40-30-20s
- ◆ $150:30s + 100:30s + 2 \ge 50:20s + 2 \ge (25 \text{ fast } 25 \text{ ez}):10s^*$
- ◆ 6 x 50 :30s + 100

Benefit of Lactate Tolerance Training (Anaerobic Capacity SP1- SP2)

Can hold near-max pace longer
Less pH disturbance
Less pain
Less muscle fatigue
Maintains Aerobic Power
Better late-race mechanics
This type of training allows you to be great the 2nd & 3rd ¼ of the race.

Anaerobic Power (Maximal Speed - SP3)

- Ability to reach maximum velocity as quickly as possible and maintain this velocity for :20"
- Helps you to set fast pace the first ¼ of the race
- ♦ Time to develop: medium, 6-8 weeks

Maximal Speed: SP3

This can only be developed by working at maximal speed over very short distances (15" max) with long rest (4').
HR= 26-30 (:10")
Time to Full Recovery: 12-72 hours
Stroke Rate: maximal
Stroke Length: shortest

Speed Training: SP3

- A. Unassisted (develops stroke rate, breathe control, coordination)
- B. Assisted (fins, tubing, etc.) allows for more hand acceleration)
- C. Resisted (parachutes, buckets, etc.) teaches you to hold more water each pull)

Anaerobic Power (Maximal Speed) SP3 sets

Set=75

- ◆ 3 x (25 fast 25 ez) :30s*
- ◆ 6 x (12.5 fast 12.5 ez) :40s*
- ◆ 6 turns :60s @ race effort
- \bullet 6 dives :90s* @15 m time
- 3×25 :60s @sprint rate, or $\frac{1}{4}$ of 100 time
- ◆ 2 x 25 :60s + 2 x (12.5 fast 12.5 ez) :30s*
- ◆ 4 x (12.5 fast 12.5 ez) :40s* + 25
- ◆ 2 x (turn + 25 fast 25 ez) :60s*
- $2 \times (25 \text{ ez} + 25 \text{ fast with turn}) :60\text{s}^*$
- ◆ 2 x (25 fast + 12.5 ez + 12.5 fast) :90s*
- ◆ 6 x (12.5 fast 37.5 ez) :30s*

Benefit of Sprint Training Anaerobic Power - SP3

Increased max speed
Ability to hold max speed 1-4 " longer
Ability to accelerate in race
Improves lactate tolerance (a little)

Training Intensity Zones as related to Physiological Qualities

7 Energy Zone System	Total Set Duration (m)	Total Set Duration (min)	HR (bpm)	HR (% max)	Work:Rest ratios	Sample Set (*for a Sr. Age Group swimmer)
AEROBIC (RECOVERY)	Variable	Variable	< 140	< 70	N/A	600 Easy Swim
AEROBIC DEVELOPMENT (EN1)	1500 - 4000	≥ 15	140 - 160	70 - 80	10 - 30 sec rest	6-10 x 400 Swim/ 10 sec rest
AEROBIC/ANAER OBIC MIX 1 (EN2)	800 - 2000	10 - 40	160 - 180	80 - 90	15 - 30 sec rest	4-6 x 300 Swim 15 sec rest
AEROBIC/ANAER OBIC MIX 2 (EN3)	600 - 1600	8 - 30	180 - Max	90 - 100	30 - 60 sec rest	4-8 x 150 Swim/ 30 sec rest
ANAEROBIC 1 (SP1)	200 - 600	2 - 15	Max	100	2:1 - 1:1	2-3 sets of 6-8x50 race tempo/ 10-30 sec rest or 4 x 125 Rotate IM/ 45 sec rest
ANAEROBIC 2 (SP2)	200 - 600	4 - 12	Max	100	1:2 - 1:4	4 x 75 Swim/ 3-4 min rest or 6 x 50/ 2 min rest
SPRINT (SP3)	25 - 100	1 - 2	Max	100	1:3 - 1:4	4-6 x dive 15m/ 1 min rest or 6-8 x 12.5 Swim/ 45 sec rest

Effect Of Training

		50	100	150	200	Time
Door Training	Split	00:27.0	00:29.5	00:30.8	00:31.9	1:59.2
ruu haininy	Lactate	7	12	13	14	
Improved AE & Economy	Split	00:27.0	00:28.5	00:28.7	00:28.3	1:52.5
	Lactate	4	6	8	9	
Improved LA tolerance &	Split	00:26.7	00:28.3	00:28.5	00:27.9	1:51.4
Speed	Lactate	4	7	10	14	

Takeaways

- ◆ Swimming is an endurance sport
- Energy Systems vary by power and capacity, depending on the source
- All energy systems are active during swimming competition
- Training Intensity Zones designed to help develop exercises for specific physiological qualities (PQs)
- ◆ Training Intensity Zones don't have clear boundaries
- Each quality contributes to a good race at a certain point

Takeaways

- Successful performance requres balanced development of PQs
- Training program should address development of all PQs

A Word Of Wisdom

- Consuming information is not the same as acquiring knowledge.
- Learning means being able to use new information.
- If you don't make time to think about what you've heard, you won't be able to use any of the ideas you've been exposed to.